Anti-commutative Gröbner-Shirshov basis of a free Lie algebra
نویسندگان
چکیده
One of the natural ways to prove that the Hall words (Philip Hall, 1933) consist of a basis of a free Lie algebra is a direct construction: to start with a linear space spanned by Hall words, to define the Lie product of Hall words, and then to check that the product yields the Lie identities (Marshall Hall, 1950). Here we suggest another way using the Composition-Diamond lemma for free anti-commutative (non-associative) algebras (A.I. Shirshov, 1962).
منابع مشابه
Gröbner–Shirshov Bases for Irreducible sln+1-Modules
In [10], inspired by an idea of Gröbner, Buchberger discovered an effective algorithm for solving the reduction problem for commutative algebras, which is now called the Gröbner Basis Theory. It was generalized to associative algebras through Bergman’s Diamond Lemma [2], and the parallel theory for Lie algebras was developed by Shirshov [21]. The key ingredient of Shirshov’s theory is the Compo...
متن کاملGröbner-Shirshov Bases for Lie Superalgebras and Their Universal Enveloping Algebras
We show that a set of monic polynomials in the free Lie superalgebra is a Gröbner-Shirshov basis for a Lie superalgebra if and only if it is a Gröbner-Shirshov basis for its universal enveloping algebra. We investigate the structure of GröbnerShirshov bases for Kac-Moody superalgebras and give explicit constructions of Gröbner-Shirshov bases for classical Lie superalgebras. Supported in part by...
متن کاملGröbner-Shirshov Bases for Lie Algebras: after A. I. Shirshov
In this paper, we review Shirshov’s method for free Lie algebras invented by him in 1962 [17] which is now called the Gröbner-Shirshov bases theory.
متن کاملNoncommutative Gröbner Bases for Almost Commutative Algebras
Let K be an infinite field and K〈X〉 = K〈X1, ..., Xn〉 the free associative algebra generated by X = {X1, ..., Xn} over K. It is proved that if I is a two-sided ideal of K〈X〉 such that the K-algebra A = K〈X〉/I is almost commutative in the sense of [3], namely, with respect to its standard N-filtration FA, the associated N-graded algebra G(A) is commutative, then I is generated by a finite Gröbner...
متن کاملParametrised Gröbner-Shirshov Bases
We consider the problem of describing Gröbner-Shirshov bases for free associative algebras in finite terms. To this end we consider parametrised elements of an algebra and give methods for working with them which under favourable conditions lead to a basis given by finitely many patterns. On the negative side we show that in general there can be no algorithm. We relate our study to the problem ...
متن کامل